Robotic catheter cardiac ablation combining ultrasound guidance and force control
نویسندگان
چکیده
Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper addresses these challenges by proposing and implementing a robotic catheter system that use 3D ultrasound image guidance and force control to enable constant contact with a moving target surface in order to perform interventional procedures, such as intracardiac tissue ablation. The robotic catheter system, consisting of a catheter module, ablation and force sensing end effector, drive system, and image-guidance and control system, was commanded to apply a constant force against a moving target using a position-modulated force control method. The control system uses a combination of position tracking, force feedback, and friction and backlash compensation to achieve accurate and safe catheter-tissue interactions. The catheter was able to maintain a 1 N force on a moving motion simulator target under ultrasound guidance with 0.08 N RMS error. In a simulated ablation experiment, the robotic catheter was also able to apply a consistent force on the target while maintaining ablation electrode contact with 97% less RMS contact resistance variation than a passive mechanical equivalent. In addition, the use of force control improved catheter motion tracking by approximately 20%. These results demonstrate that 3D ultrasound guidance and force tracking allow the robotic system to maintain improved contact with a moving tissue structure, thus allowing for more accurate and repeatable cardiac procedures.
منابع مشابه
Motion Compensated Catheter Ablation of the Beating Heart Using Image Guidance and Force Control
Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper ad...
متن کاملA systematic review of the effectiveness of catheter ablation NavX mapping system for treatment of the cardiac arrhythmia
Background: Catheter ablation is widely used for treatment of atrial fibrillation. The use of fluoroscopic and non-fluoroscopic mapping systems in catheter ablation is common. This study conducted to investigate the safety and effectiveness of Navx non-fluoroscopic mapping system. Methods : In this study, the appropriate electronic databases including Cochrane Library and Ovid Medline searc...
متن کاملRobotic Ablation of Atrial Fibrillation
BACKGROUND Pulmonary vein isolation (PVI) is an established treatment for atrial fibrillation (AF). During PVI an electrical conduction block between pulmonary vein (PV) and left atrium (LA) is created. This conduction block prevents AF, which is triggered by irregular electric activity originating from the PV. However, transmural atrial lesions are required which can be challenging. Re-conduct...
متن کاملRobotic Catheters for Beating Heart Surgery
Compliant and flexible cardiac catheters provide direct access to the inside of the heart via the vascular system without requiring clinicians to stop the heart or open the chest. However, the fast motion of the intracardiac structures makes it difficult to modify and repair the cardiac tissue in a controlled and safe manner. In addition, rigid robotic tools for beating heart surgery require th...
متن کاملFirst in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter.
OBJECTIVES The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 33 شماره
صفحات -
تاریخ انتشار 2014